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Abstract

Gravity modulation of an unbounded fluid layer with

surface tension variations along its free surface is

investigated. In parameter space of (wavenumber,

Marangoni number) modulation has a destabilizing

effect on the unmodulated neutral stability curve for

large Prandtl number, Pr, and small modulation

frequency, f2, while a stabilizing effect is observed for

small Pr and large f2. As f2 --->oo, the modulated neutral

stability curves approach the unmodulated neutral

stability curve. At certain values of Pr and f2 multiple

minima are observed and the neutral stability curves

become highly distorted. Closed regions of

subharmonic instability are also observed. Alternating

regions of synchronous and subharmonic instability

separated by very thin stable regions are observed in

(I/f2,g_) space for the singly diffusive cases.

Quasiperiodic behavior in addition to the synchronous
and subharmonic responses are observed for the case of

a double diffusive fluid layer. Minimum acceleration

amplitudes were observed to closely correspond with a

subharmonic response, _._, = f2 / 2.

1. Introduction

Under certain conditions such as thin liquid

fills or in a low-gravity environment, surface tension

variations along a free surface may induce convection,

referred to as thermocapillary convection. Orbiting

spacecraft such as the NASA space shuttle and Russian

Mir space station have proven to be useful
environments for studying thermocapillary phenomena,

which are often masked by gravity under terrestrial

conditions. Thermocapillary phenomena are important

to potential microgravity technologies such as crystal

growing and materials processing applications as well

as terresWial applications such as coatings and drying

processes. Onset of thermocapillary convection in the

form of an extended Marangoni-Benard problem

remains an active topic of study, in part due to its

relative simplicity in terms of a motionless basic state

and constant (or time periodic)• The popularity of such

models also stems from the understanding and insight

they have provided to a broad range of physical

phenomena (Pimputkar and Ostrach, 1981, Ostrach

1982, Davis 1987, Legro et. al, 1990, and Kochmeider

1993). Onboard space platforms the effects of vibration

or g-jitter on thermocapillary systems is of particular

concern (Nelson, 1991), although parametric excitation

may also be of interest for terrestrial processes. With

the question of g-jitter in mind, we focus on perhaps the
simplest class of thermocapillary problems, the

Marangoni-Benard problem, and consider how a fluid

layer responds to time periodic accelerations or gravity

modulation, which are imposed in the direction of the

basic temperature gradient.
Gershuni and Zhukhovitskii (1963) and

Venezian (1969) considered the effect of temperature

modulation on the Rayleigh-Benard problems where

buoyancy drives convection. Two papers, Gershuni,
Zhukhovitskii, and Iurkov (1970) and Gresho and Sani

(1970), address gravity modulation of the Rayleigh-

Benard problem. Gershuni, Zhukhovitskii, and Iurkov

(1970) considered the linear stability of an unbounded

fluid layer and fluid with in a vertical circular cylinder

with modulation of both the mean vertical temperature

gradient and the vertical component of gravity, while

Gresho and Sani (1970) studied both linear and

nonlinear behavior of the gravity modulated unbounded

layer• In both studies, a one-term Galerkin expansion

reduced the equations to a single second order ordinary
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differential equation, ODE. Applying a direct analogy

to the viscously damped pendulum with an oscillating

vertical support, Gresho and Sani (1970) recast the
problem in terms of the Mathieu equation reducing the

number of parameters affecting the system behavior

from six (fluid transport) parameters to three (Mathieu)

parameters. Murray et. al. (1991) and Wheeler et. al.

(1991) treated the gravity modulated onset of

convection problem with respect to directional

solidification. In these papers it was shown that certain

combinations of modulation amplitudes and modulation

frequencies, stabilized the unmodulated fluid layer that
would normally be unstable, or destabilized a fluid

layer whose unmodulated state is stable.

More recently, Or and Kelly (1995) and Kelly

and Or (1998) have investigated the effect of sbear and

temperature modulation on the Marangoni-Benard

problem and noted interesting behavior that was also

associated with surface deformation. For example,

shear modulation by oscillating the lower (rigid)

boundary destabilized the long wavelength mode but
stabilized the f'mite wavelength modes. They found

shear modulation could stabilize both finite and long

wavelength modes while thermal modulation is
effective in stabilizing the finite mode (Kelly and Or

1998).

The onset of convection (Rayleigh-Benard

type) problem has been extended to double diffusive

systems by Saunders et. al. (1992) and Ten'ones and

Chen (1993). In these studies density gradients due to

temperature and species concentration gradients drive

convection. Ten'ones and Chen (1993) studied the

linear stability of gravity modulation and cross-
diffusion on the onset of convection in an unbounded

doubly diffusive fluid layer. They considered the Soret
and Dufour effects as well as cases where the cross-

diffusion effects were directly imposed. The results of

both Saunders et. al. (1992) and Ten'unes and Chen

(1993) demonstrate a rich variety of behavior, such as

synchronous, subharmonic, quasi-periodic, and

multiple minima.

In this paper, parametric excitation of an
unbounded fluid layer with surface tension variation

along the free surface is considered and Floquet theory

is applied to examine the stability of the modulated

system. We initially focus on the gravity modulated

Marangoni-Benard problem and then present a set of

stability results for the modulated double diffusive

Marangoni-Benard problem. The problem is first
formulated for an unbounded double diffusive fluid

layer where both density and surface tension variations

due to temperature and/or concentration gradients
induce convection.

2. Formulation of Equations and Boundary
Conditions

An unbounded double diffusive fluid layer

with dimension 0 < x: < d is considered. The

governing equations, continuity, momentum, energy,

and species equations for incompressible flow are given

below in Eqs. (1)-(4).

au__;=o (l)

au; +u;au;=
&" _

02U_
- 1 0p" P g_(t')Si3 + v_

(2)

U;caT'=D,,0'T"
a+ 0x; ax; ;

(3)

0t" + _ (4)

where 8ij = Kronecker's delta and i=1,2,3 and *

denotes dimensional quantities. The dependent

variables U_, T', and c" are the velocity,

temperature, and species, respectively. The time

dependent body force term is periodic, of the form

g'(t) =g_ +g_ cos(la't'). Density, 9, is computed

using the Boussinesq approximation,

w oro
thermalexpansioncoefficientand D2isthesolutal

expansioncoefficient.Referencevalueschosen forthe

buoyancy termsarethetemperatureand concentration

basicstatevaluesofthelowersurface,To and Eo.The

kinematicviscosity,v,thermaldiffusivity,Dtt,and

mass diffusivity,D=, areassumed constant.

Impenetrable and no-slip velocity conditions

are applied, and constant temperature and concentration

are imposed at lower surface, x; = 0.

At x; = 0 (Bottom)

U;=0, T'(0)=To, c'(0)=_;, (fori=IP.,3)(6a-e)

The upper surface at x; = d is flat and nondeformable

leading to equation (7a) while tangential stress balances
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are given by(7b,c). Heat and mass flux conditions are

given by equations (7d,e).

At x; = d (Top)

U; = 0 (7a)

(au;+au; aT" (7a, b)

-pcpDlt _ =Q" , -Du_=J" (7d,e)

where: j = 1,2; and p and % are the dynamic viscosity

and specific heat, respectively, with constant values.

Surface tension, a, is approximated as a linearized

function of the T" and c',

a = a o - '/z (T" - T') - ), 2 (c" - E_ ). The surface

tension variation with temperature, T 1, and the surface

tension variation with concentration, T 2, are defined

as _1 = -(_/0T')o..,. and _2 =-(0o/_'b.," '

respectively (Adamson 1982). Q" and J" are heat and
mass fluxes to the environment at the free surface.

The velocity, temperature, and concentration

basic state profiles are U' = 0,

T'(x;) = T'(0)- AT" -_d_-, E'(x;)=e'(0) -Ae" x-'Ldwhere

the difference quantities of the form Ay" are def'med as

Ay" = y'(0)-y'(d). Following Joseph (1976),

Saunders et. al. (1992), and Terrones and Chen (1993),

the equations are linearized and then
nondimensionalized. Reference values used to

nondimensionalize the resulting disturbance equations

d'are d, , -_, &T °, Ag" for length, velocity,

time, temperature, and concentration, respectively. By

assuming solutions of the form

(u(x_, t), 0(x_, t), c0q, t)) --
(w(x 3,t), _x 3, t), X(x3, t)) exp(i(c£x, + ct2rn))

for the perturbation variables, velocity, u, temperature,

0, and concentration, c, the following disturbance

equations of x3-momentum, energy, and species are
obtained.

D _ cr 2)_V =

_ pr a2g(t)(Ra_b + Rs / _22 O) + Pr(D2 _ or,)2 w (8)

_=(D 2 _ _2)_ + w (9)

o <10)

where g(t) = go +gl cos_t, go = g:/go ,g, = g:/g_,

and _r2 = k"2"DII / d 2 .

Rigid, conductive, and permeable conditions,

are imposed on the disturbance velocity, temperature
and concentration at x3= 0. A flat-nondeforming free

surface yields equation (12a) while the tangential stress

balance is given by equation (12b). Equations (12c,d)
are the disturbance flux conditions at the free surface.

At x3 = 0,

At x3= 1

w=O

I_+Nu_=0

w=0 Dw=0 _=0 O=0 (lla-d)

D2w =--_2(Ma, + Ms/#, O) (12a, b)

DO + ShO = 0 (12c,d)

where D denotes 0 / O_ 3 and " denotes aw / &. The

resulting dimensionless parameters from the above

equations are: the Prandtl number, Pr = v/D,,

Diffusivity ratio, _9,, = D22 /D n, thermal Rayleigh

number, Ra = gc_tAT'd 3 / D,v, solutal Rayleigh

number Rs= g:132A_'d 3 / Dnv, thermal Marangoni

number, Ma = _, ,AT'd / Dt,_t, solutal Marangoni

number, Ms = y 2Ac'd / D22 g , surface Nusselt number,

Nu = h,d/to, surface Sherwood number,

Sh = h2d / D22.1

The disturbance equations are reduced to a set

of N ordinary differential equations, ODE's, using a

spectral (Chebyshev) collocation scheme. Floquet

analysis is applied to examine the stability of the

system ofODE's (Meirovitch 1970, and Joseph 1976).

The monodromy matrix is computed by integrating the

N set ofODE's N times. Floquet multipliers, pj, which
are the eigenvalues of the monodromy matrix are then

computed, and the characteristic exponents, _1, which
determine the stability of the system are related to the

1

floquet multipliers as Z.j = T in(pj )" The characteristic

exponent with the largest real part, _., determines the

stability of the system. If Re(Z.) is positive, disturbances

grow, if Re(k) is negative, disturbances decay. The
imaginary part of k is multivalued and characterizes the

: h_ and h2 are surface heat and mass transfer

coefficients defined in Pearson 1958, and Skarda et. al.

1998 (among several refs.), n is the thermal

conductivity of the fluid layer.
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system response. The response is synchronous when

lm(_.) = nO, and subharmonic when

In+ l)f2, where n is an integer value. WhenIm(_.)
I

the two frequencies are incommensurate, 18];_n for

8-_, the response is quasiperiodic (JosephlmO,)

1976, Saunders et. al. 1992, and Terrones and Chert

1993).

3. Results For Modulated Singly Diffusive Fluid

Layer

The effect of modulation frequency on neutral

stability is fhst examined in (a,Ma) space, typically

used to study stability behavior of the unmodulated

Marangoni-Benard problem. The set of neutral stability

curves in Figs. Ia-f corresponds to Pr, gl, and Ra values

of 1, 5 and 1000, respectively. Below each curve, the

system is stable and "small" disturbances decay, and
above the curve, the system is unstable and the

disturbances will grow in time. The unmodulated

neutral stability curve is shown in each figure as a

reference point to directly compare and contrast the

effect of modulation on the neutral stability boundaries.

Fig. la reveals the existence of two small

local minima (denoted as humps) near the bottom of the

neutral stability for f2=7. Ma c is associated with hump

3 in Fig. la and shifts to hump 2 for f_-10 indicated in

Fig. lb. This suggests that a double minima exists

along the synchronous curve for some f2 between 7

and 10. In Fig. lc where f2 =14.5, hump 2 forms a

narrow finger that extends below the unmodulated Mac

of 80, thus having a destabilizing effect on the

unmodulated neutral stability curve. Another local

minimum, hump 1, is found near a--I in Fig. Ic.

Examination of Figs. l d-f indicates hump 1 continues

to grow as hump 2 recedes with increasing f2,
suggesting the presence of another double minima.

Hump 2 eventually disappears with increasing

modulation frequency. Between f2 of 17 and 18, a

subharmonic closed neutral stability branch forms. The

subharmonic region of instability grows with increasing

modulation frequency until reaching an f2 of

approximately 35. The subharmonic branch then begins

to shrink and shiRs to higher wavenumbers and lower

Marangoni numbers. The subharmonic branch

continues to shrink and eventually disappears as f2

increases to a value of 100 where only the synchronous

branch is evident. For f2 > 100 the subharmonic loop

300

200

:_ 100

-1 O0
300

200

m

100

-1 O0

I I I I I

/-..............\
hump 1 hump 2

i3=17

I I I I I

0 1 2 3 4 5 6
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I I I I I

hump 2 hump 3

, , , f2= 0111

I I I I ,/
".._ "

"".0.........\
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hump 1

f2=18

I I I I I

0 1 2 3 4 5 6

(2

I I I I I

""'. ..... ,-" ,'""'°
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i3= 14.5

I I I I I

0 1 2 3 4 5 6

(2

Modulated Neutral Stability Curve

........Unmodulated Neutral Stability Curve

Figure l Neu_'al Stability Curves for Pr=l., g0=0, gl=5, Ra=1000
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shifts out of the range of Ma values explored while

modulation is observed to have a stabilizing effect on

the synchronous branch. The stabilization effect
however diminishes with further increase of the

modulation frequency. The shapes of the neutral

stability curves also change with modulation.

The behavior of critical Marangoni numbers,

Ma_, and critical wavenumbers, (x=,with respect to

modulation frequency are shown in Figs. 2 through 3
for Pr values of.01, 7.1, 10 and 100. In view of the

complex topology of the neutral stability curves, the

critical values for Pr=-I are presented separately in Figs.

4 and 5. This level of complexity was not observed in

the neutral stability plots at the other Pr values (for the

range of parameter values we investigated) therefore
we discuss these Pr values f'wst.

120

80

o

40

i i ! i /

- Pr = 7.1

t..-'-"_,,_.... •...... Pr : 10 /

]
o 120

801- i --I I i

0 20 40 60 80 100
I I _'_ I

200 400 600 800 1000

fZ

Figure 2 Critical Macversus modulation frequency, £2,

for varying Pr values. Ra = -1000, go = 0, gl = 5.

3.0 i i i i

-- Pr=0.01
2.5 ": 2

_" I I I I

: _. 0 20 40 f_60 80 100

Pr= 7.1
1.5 ....... Pr = 10

--.- Pr= 100

1.0 i i i i
0 200 400 600 800 1000

Q

Figure3 Critical wavenumbcr,et=,versusmodulation

frequency,_, for varying Pr values.
Ra = -1000, go = 0, gl = 5.

o 2.0

Gravity modulation for sufficiently small fZ, is

destabilizing for all Pr values investigated. As f2

increases, gravity modulation has a stabilizing effect on

Mac which reaches a maximum at some finite values of

FZ. The stabilizing effect then decreases with a further

increase in f2, and approaches the unmodulated critical

value of Ma_=79.607 as f2 --, oo. Values of Mac, f2,

and cq where maximum stabilization occurs are given
in Table 1.

Table I Values of f2, Ma o and cq
for maximum stabilization

Pr gt _ Mac

.01 5 3.4 125.77

7.10 5 88.0 123.67

10.00 5 116.0 115.20

100.00 ° 5 1000.0" 85.09"

2.68

1.54

1.60

1.92"

"Maximum Stabilization Occurs Beyond f2=1000

Critical and extremum values of Ma and ot for

Pr=-I are shown in Figs. 4 and 5. Critical Marangoni

numbers and wavenumbers of the synchronous branch
are shown as functions of modulation frequency in

Figs. 4a, b, while extremum values ofMa c and ctc for

the subharmonic branch are shown in Figs. 5a,b.

200 , , ,

150 lump 3_

_J_ [ hump 2 Pr =
50 1 Ra = 1000

J g°=0 g1=5

0 t I I t
0 20 40 60 80

t3

Figure 4a Ma c versus f2 for the

synchronous branch. For Pr= ]

4

3

o

2

1
0

I

hump 3/'/''_

I I I

Pr=l Ra = 1000

go=0 g1=5

I I I

20 40 60
fZ

Figure 4b ctc versus f2 for the

synchronous branch. For Pr=-I

hum0meL_l
I

80
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Figure 5a Ma c versus Q for the

subharmonic branch. For Pr=l

55

3

2

15 55

I I I I I I I

go=O g1=5
I I I I I I I

20 25 30 35 40 45 50
Q

Figure 5b a c versus Q for the

subharmonic branch. For Pr= l

The location and critical values corresponding

to the two double minima observed in Fig. 4a are given

in Table 2. Physically, the double minima suggest

possible occurrence of mode switching where the

cellular (or roll) pattern alternates between two cell or

roll sizes dictated by the two different wavenumbers.

Such a process would be easily observed given the

large difference in the two wavenumbers associated
with each of the double minima in Table 2.

Table 2 Location and critical values

for double minima

f2 Ma c acl ac2

9.00 124.0 1.7 3.1

25.24 185.7 1.2 3.5

Figs.5a,brevealthatthesubharmonicbranch

forms atan _ slightlylessthan 17.5and disappearsjust

beyond an Q of52. The subharmonicinstability

extendstoMa valueslessthan-250,where stable

temperature gradient occurs for the unmodulated

problem.

3.2 Modulated Marangoni-Benard & Rayleigh-

Benard Instabilities in (1/Q,g 0 Space

For the unmodulated problem, neutral stability

curves in (a,Ma) space for the Marangoni-Benard

problem are qualitatively similar to those of the

Rayleigh-Benard. Unfortunately this correspondence of

stability behavior between (a,Ma) space and (a,Ra)

space does not hold for the modulated problem. This is

because changing Ra simultaneously effects both the

steady instability agency (buoyancy) and the

modulation amplitudewhich is also part of the
buoyancy term. In contrast, varying Ma only effects a

steady instability agency - that of the surface tension

variation. The result is that stability behavior observed

in the (a,Ra) plane is not likely to apply to similar

conditions in the (a,Ma) plane. A more appropriate

space to compare the modulated Rayleigh-Benard and

Marangoni stability behavior is that of (l/f_,gl) space.

Three neutral stability maps in (l/D_gj) space

corresponding to different values of Ma, and go are

shown in Figs. 6a, b,c. The values of a, Ra, and Pr are

2, I000, and l, respectively, for these figures. For go=

l, the Rayleigh number of 1000 in Fig. 6a, is 49.2%

higher than the unmodulated neutral stability Rayleigh

number at a=2. In Fig. 6b, the mean gravity

acceleration level, go, and Ma are zero: therefore both

the steady instability agencies of buoyancy and surface

tension are zero. And in Fig. 6c, the Marangoni number

is 118.77, which is 49.2% greater than the unmodulated
neutral value of Ma at a=2.

Results in Fig. 6a correspond to the modulated

Rayleigh-Benard problem with a rigid-conductive

lower surface and a free-insulated upper surface while

the steady gravity acceleration level, go, is set to one

which corresponds to terrestrial conditions. Fig. 6a

reveals that a finite acceleration amplitude is required

to stabilize the layer. Further increase in gL eventually

destabilizes the layer. In general, alternating bands of

synchronous and subharmonic instability separated by

thin stable regions are observed in Fig 6a which is also

characteristic of temperature modulation results of
Gershuni and Zhukhovitskii (1963) and Kelly and Or

(1998). Gershuni and Zhukhovitskii (1963) referred to

the lower most region of instability as the fundamental

instability region and showed that it existed for Ra

values exceeding the unmodulated neutral Ra value §.

_The situation equally applies to the Marangoni-Benard

problem where Ma values replaces Ra values.
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Figures 6a, b, c. Stability boundaries in (1/_,g_) space
for a=2 and Ra=lO00.

identical those applied in Fig. 6a. Since mean instability
agencies are zero for these results, i.e., Mafgo=O, no
fundamental instability exists. The system is stable for
all frequencies until a f'miteamplitude value is reached.
The stable regions separating the fingers of instability
become quite thin with decreasing frequency and
increasing modulation amplitude. A similar set of
results, but with free-conductive boundaries was

presented by Saunders et al. (1992). They chose Ra
and Pr values of 1000 and .1, respectively, and
a = _ / 2. While their Pr and wavenumber differ from
the Pr and a values used for Fig. 6, the shape and
orientation of the instability fmgers are quite similar.
Their minimum modulation amplitude for instability

was 7.3 corresponding to an f4 of 10.5 as compared to
the minimum amplitude of 4.05 and _ of 24.4 for Fig.
6b.'"

The gravity modulated Marangoni instability
shown in Figs. 6c, exhibits a fundamental instability
band for small values ofgv This is consistent with the

Rayleigh-Benard instability discussed for Fig. 6a, since
Ma exceeds its corresponding unmodulated neutral
stability value, Ma=79.6. A minimum fmite amplitude
of 4.97 is reached at f_=20.0 where modulation

stabilizes the fundamental instability. At larger

amplitude, the resonant instability regions or fingers,
are attained as in Fig. 6b. The appearance of the
synchronous and subharmonic instability regions is
qualitatively different from the modulated Rayleigh-
Benard problem observed in Fig. 6a. In Fig. 6c,
multiple regions of stability exist that engulf each of the
subharmonic instability f'mgers, and a single region of

synchronous instability, the fundamental instability,
surrounds the multiple stable regions. In all plots in
Fig. 6a,b,c, regions of alternating
subharmonic/synchronous instability occur and are
separated by regions of stability.

4.0 Results For The Double Diffusive Fluid Layer

The large parameter space associated with the
gravity-modulated doubly-diffusive Marangoni
instability problem poses a serious challenge to a full
characterization of such systems. For our doubly
diffusive gravity-modulated problem there are twelve
parameters (Pr, Ra, Rs, Ma, Ms, c_,Nu, Sh, D., go, g_,

In Fig 6b, the steady acceleration level is
go = 0, corresponding to a zero gravity condition while
all other parameter values and boundary conditions are

"" For consistency, Saunders et al.'s (1992)

dimensionless frequency was converted to G defined
herein by _ = Pr f_s==_==-

7
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Q).**The difficulty in handling large parameter spaces
was similarly acknowledged in the gravity modulated
Rayleigh-Benard investigations of Saunders et. al.
(1992) and Terrones and Chert (1993). For this study,
we choose a single set of values for (Pr, _ga, Ra, Rs,
Ms, Nu, Sh, go), and again investigate stability behavior
in the parameter spaces of (a,Ma) and (l/f2,g 0.

4.1 Stability Boundaries For Unmodulated Double
Diffusive System

For the unmodulatod double diffusive

problem, oscillatory (diffusive) neutral stability
associated with a Hopf bifurcation is possible, in
addition to the stationary (f'mgering) instability

resulting from an exchange-of-stabilities that typically
occurs for the singly unmodulated Benard problem.
Modulated behavior also differs depending on the
nature of the unmodulated instability, oscillatory or

stationary. Therefore, we first compute stability
boundaries for the unmodulated double diffusive

problem using a normal mode analysis and use these
results to choose parameter values that yield the desired
behavior i.e. stationary or oscillatory.

Stability boundaries are shown in (Ms=,Ma_)

space in Fig. 7 for the parameter set (Pr,_=,Ra, gs,Nu,
Sh) with values (10,0.1,500,-500,0,0). The Pr value is
representative of water-alcohol or thermohaline
systems, although, _u for such systems is normally in
the range, 10"3to 10"2.The shape of the stability
boundaries is also characteristic of double diffusive

systems with the small _= values (Legros 1990,
Ten'ones & Chert 1993, Skarda et. al. 1998). A co-

dimension two point, represented by the intersection of
the oscillatory and stationary boundaries occurs at the
point, (Ms_,Ma_)= (-9.0, 88.6). To the left of the co-
dimension two point, the transition from stable to
unstable behavior occurs via a Hopf bifurcation and
oscillatory neutral stability behavior is observed. To the
right of the co-dimension two point exchange of
stability is observed resulting in the presence of

stationary neutral stability boundary. Frequencies, _.i_,

and critical wavenumbers, ctc, associated with the
oscillatory stability boundary are shown in the insert of

Fig. 7. (Here, _. is the eigenvalue with the largest real
part obtained from a normal mode analysis of the
unmodulated problem (Pearson 1958, Joseph 1976,

Skarda et. al. 1998)). Both Zi, and c¢=increase with

"Even the singly-diffusive gravity-modulated problem
required consideration of eight parameters.

increasing Ma_values, moving to the left of and away
from the co-dimension two point.

1000

50O

-500

-1000

---- O_l_toly ___

-°,oF-
o.......",
•6000 -4000 Ms-_ 0

¢

I I I I I I

-6(}00 -.50(}0-4000 -3000 -20(}0 -1000 0 1000

Figure7 Stability Envelope for Pr=lO, Qz2=0.1

(=nsart,_owsvariaOonof_ncy, _, andwaveur_, _

4.2 Gravity Modulated Double Diffusive Layer

For the parameter values we chose that
correspond to the stationary (fingering) instability,

Z_ = 0, the modulated stability behavior is similar to

the singly diffusive results discussed in the previous
section. However, for parameter values corresponding

to oscillatory (diffusive) behavior, _.,, O, of the

unmodulated system, a rich variety of behavior is
possible along the neutral stability curve. Only results
for parameter values corresponding to oscillatory
behavior are presented below.
The effect of frequency modulation on neutral stability
curves is shown in Figs. 8a, and 8b. The elements of the
parameter set (Pr, D,,, Ms, Ra, Rs, Nu, Sh, go) are
chosen as (I0, 0.1, -700, 1000, -I000, 0, 0, 0), which
correspond to oscillatory neutral stability behavior of
the unmodulated problem. The unmodulated double
diffusive neutral stability curve is provided in Figs. 8
for comparison with modulated curves, and is
represented by the dotted line. The corresponding
frequency, _,=, values are shown in Figs.9a and 9b. The
locations of the bifurcation points along the modulated
neutral stability curves are tabulated in Table 3.
Quasiperiodic behavior occurs when _, and f_ are
incommensurate. For the oscillatory region of the
unmodulated layer, oscillatory behavior occurs, while a
complicated temporal flow structure occurs for the
quasiperiodic region of the modulated fluid layer in
Figs. 8a and 8b.
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(a)_=20, (b)_=5.
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Figure 9 Imaginary part of most unstable characteristic root,_.,m.

Parameters, Ms, Pr, _;)22, Ra, Rs, go, and g_, have same values

as those used for figure 8. (a) _ = 20, (b) _ = 5.

Table 3 Location of Bifurcation Points For Neutral

Stability Curves in (cx,Ma) space Pr=10 Dzz=.l

Ra=500 Ms=--700 Rs=--500 go--0 gl=l

f2

20

Bifurc Type CXbifr Mabifr _'imbitr

qu --_ sub 2.76 122.5 10.0

sub --_ qu 4.48 206.8 10.0

qu -_ sub 0.86 208.0 2.5

sub --_ qu 1.61 129.0 2.5

qu-syn-qu 2.18 125.7 5.0

qu --_ sub 2.74 126.1 7.5

sub --+ qu 2.98 129.5 7.5

qu-syn-qu 3.71 157.0 I0.0

* Subharmonic loop also observed for D=50

Two bifurcation points are observed along the

doubly diffusive stability curve for Q=20 shown in Fig.

8a. Moving from left to fight along the neutral stability

curve, quasiperiodic behavior gives way to
subharmonic behavior which in turn bifurcates to

quasiperiodic behavior again. Values of ot and Ma

corresponding to the bifurcation points are given in
Table 3. _'he critical Marangoni number, Mac, occurs in

the subharmonic region. However, careful examination
of Fig. 8a also reveals the existence of a local

quasiperiodic minimum.

Reducing the modulation frequency further to

_=5 increases the complexity of behavior along the

neutral stability curve. Six bifurcation points are shown

in Fig. 8b. Five regions of quasiperiodic behavior are

separated by intervals or points of subharmonic,

synchronous, subharmonic, and synchronous behavior,

respectively. The critical Marangoni number, Mac is

subharmonic, with local minima occurring in

quasiperiodic and other subharmonic regions as well.

Values of a, Ma, and k_,, corresponding to the

bifurcation points are given in Table 3.

The frequency, Zim, plots in Figs. 9a and 9b

confu'm that resonance is responsible for the

bifurcations observed in Figs. 8a and 8b. Resonant

behavior is expected when _'_mand _ are
n.O

commensurate, i.e., ;L_ = --, where n is an integer
2
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value.The maximum value of _m over the range

0.5 < a _<5 for the unmodulated layer is 14.06,

therefore, resonance is anticipated at some location

along the neutral stability curve where the modulation

frequency, f2, satisfies £2 _<28.12. Subharmonic

excitation is clearly visible in Figs. 9a and 9b as _,_

approaches the f2 value of 10 and 2.5 respectively.
2

The smallest wavenurnber, a, where _._m=5in Fig. 9a is

2.76, which is a quasiperiodic to subharmonic

bifurcation point given in Table 3. Similar behavior

occurs in Fig. 9b for _==2.5. For f2= 5, both

subharmonic and synchronous resonances occur for

values where the unmodulated _._=of 2.5, 5, 7.5, 10 are
obtained.

The doubly diffusive Marangoni instability

was also investigated in (1/f2,g_) space for a set of

parameter values where unmodulated oscillatory
behavior occurs. Values of czand Ma were chosen as

2.2 and 111, respectively, while other parameters

maintain their values prescribed above. This parameter
set yields an oscillatory and slightly stable behavior in

the absence of modulation where the eigenvalue with

the largest growth rate was computed as
_, = - 0.2422 + i 6.137.

The stability boundaries in (l/f2, g_) space are

shown in Fig. 10. A single continuous region of

subharmonic instability was observed for sufficiently

large modulation amplitudes, gt- The subharmonic

instability region extends to small g_ values on either
side of a small closed loop region of synchronous

instability. A minimum amplitude, gt=0.228 is

necessary to destabilize the layer. The parametric

nf2

response, --_--, in this case is subharmonic, where the

corresponding modulation frequency is f1=12.3 which

is twice the value of the unmodulated _.i,_indicated

above. Quasiperiodic behavior was observed for
O.>19.05.

Time histories for the velocity, temperature,

and species disturbances of a double diffusive fluid

layer are shown in Figs. 11-13. Parameter values for all

three cases correspond to neutrally stable systems.

Oscillatory behavior for an unmodulated fluid layer is

shown in Figs. 11 The subharmonic and quasiperiodic

behavior shown in Figs. 12 and 13 correspond to

parameter values chosen at two different locations

along the neutral stability curve in Fig. 8b.

0
0.00

quasiperiodic .,

....... subharmonic •

• bifurcation pt. "
.. .-"

t i , T""

0.02 0.04 0.06 0.08 0.10

1/C_

Figure 10. Modulated double-diffusive

Marangoni-Benard stability boundaries in

(gl,l/f2) space, c¢= 2.2, go = 0, Pr= 10,

_>= = 0.1, Ra = 500, Rs = -500,

Ma = 111, Ms = -700.

5. Conclusions

The stability behavior for both the singly and

doubly diffusive Marangoni-Benard problems is more

complex in the presence of modulation. For the singly
diffusive problem, modulation had a stabilizing effect

on neutral stability curves in (ct,Ma) space at large

modulation frequencies and approached the

unmodulated neutral stability curve as f2 --, oo. For a

Pr of 1, both synchronous and subharmonic regions of

instability were observed for certain values of

modulation frequency. The synchronous branch

became distorted with local minima and narrow fingers

forming at certain values of f2. Sometimes both local

minima were above the unmodulated Mac, thus

resulting in a stabilizing effect. At other times one local

minimum extended below the unmodulated Mac.

Maximum stabilization, (largest Mac) occurred at some

finite value of modulation frequency.

In previous modulated Rayleigh-Benard

studies, alternating regions of harmonic and

subharmonic were observed in (1/fl,gl), however the

shape of the unstable regions from those of the present

modulated Marangoni study qualitatively differed. For

the Marangoni-Benard problem, multiple regions of

stability exist that engulf each of the subharmonic

instability fingers, and a single region of synchronous

instability, the fundamental instability, surrounds the

multiple stable regions.
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Figures 11-13. Time histories of velocity, temperature, and species disturbances at the center of the layer, z--0.5,

for neutral stability. Pr = 10, _9= = 0. I, Ms = -700, Ra = 1000, Rs = -1000, go = 0, _ = 5. Figure 11, a = 2.5,

Ma = 119.86. Figure 12, a = 1.2, Ma = 99.2777., Figure 13, a = 2.7, Ma = 125.8057.

The gravity modulated doubly diffusive

Marangoni instability was considered for a single set of

Pr and _9= values. For parameter values corresponding

to the stationary (fingering) instability, the modulated
behavior is similar to the singly diffusive results. When

parameter values correspond to oscillatory (diffusive)

behavior, _._ _ 0, of the unmodulated system, regions

of quasiperiodic, subhatmonic and synchronous
behavior were found to exist along the neutral stability
curves. This behavior is consistent with that of the

double diffusive Rayleigh-Benard instability reported

by Saunders et. al. (1992) and Terrones and Chen

(1993). As modulation frequency, f2, was decreased,

bifurcations along the neutral stability curve became

more frequent due to parametric resonances. For a

given value of _.i=, accompanied by a decrease in _,

clearly the number of bifurcations increases as n = --
2G

(n is an integer value only). In (1/G,g0 space, the

minimum g: necessary tO destabilize the layer was the
result of subharmonic excitation and thus occurred at a

modulation frequency twice the value of the

unmodulated k_.
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